Following on from the Six Weights Puzzle from a fortnight ago (which can be found here) we have another, slightly harder problem.
In this case you have six weights that are visibly identical. Three are light and three are heavy. All three light weights weigh the same, and all three heavy weights weigh the same.
Can you you determine which three weights are heavy using three weighings on a balance scales?
The table below shows the four different combinations, with an uppercase letter indicating a heavy weight, and a lowercase letter indicating a light weight.
1 | 2 | 3 | 4 |
a v B | a v B | a v b | a v b |
c v D | c v d | b v c | b v C |
e v F | d v E | c v D | D v E |
Which gives you the three heavy (and of course light) weights.