A few months ago we shared a puzzle that was given to us by a maths teacher who used to set it as a revision exercise. It involved making equations using four fours to make one, two, three and so on.

He has now given us a second, very similar, and perhaps more challenging problem - do the same with three threes!

So, you have to make a series of equations containing three threes and any number of common mathematical symbols. The first equation must total one, the second equation must total two, and so on . . . as far as you can go. We got to 50 with four fours - how far can you extend this sequence.

In this puzzle you can combines threes to make 33 (or 333) so 33 * 3 = 99 is a valid equation. And you can raise to the power of 3, so 3 ^ 3 * 3 = 81 is also valid. You must use three threes each time - you can't use two!

So how long a sequence of equations can you produce?

As usual you can post the answers as a comment on this website, reply to the post on Facebook, or retweet or reply on Twitter @quizmastershop.

Answer at 9.00 on Monday